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1. Abstract 
The challenge of driving a ground vehicle on roads in snow-covered mountains is a 
pressing one. We have proposed a novel solution for navigating an unmanned ground 
vehicle with the help of an unmanned aerial vehicle. Some key points used in our 
approach are: 
➔ We have used depth image feed for road detection instead of RGB image because 

of low visual features in the RGB image. This makes our algorithm more robust and 
immune to differences in the terrain’s visual features (colours, textures, etc.) 

➔ Since the UAV’s navigation is dependent on the depth image, and the UGV’s 
navigation is dependent on the RGB image, both can be done simultaneously 
without the explicit need for a pre-generated map. 

➔ We’ve not used any 3rd party package for mapping or navigation, thus making the 
algorithm superior in terms of originality and computational cost. 

➔  Our algorithm is computationally quite efficient. World 1 is completely covered by 
UGV in 3 minutes. 

 
The approach developed is depicted stepwise as follows: 
 

 
 
 
 
 
 



 
 
 
 

2. Road Detection and Mapping 
 
As is clear from the worlds provided, the road is a relatively flat region between a 
combination of valley and a cliff. However, the visual features of the road in the RGB 
image are not distinct enough to be able to be differentiated from the surrounding 
terrain. Thus, for detecting the road below the UAV, we’ve worked with the depth image 
of the drone published on the /depth_camera/depth/image_raw topic. 
 
The depth camera being blind to the image overlay outputs an image that only has 
different pixel intensities corresponding to the depth of the terrain points below. The road 
thus can be distinguished, being a very slight gradient, from either side (valleys and cliffs), 
having higher values of intensity gradients. 
 

                                      
      Depth Image           RGB Image 
 

 
We’ve used OpenCV to detect the centre of the road. The road’s slope in the forward 
direction is calculated using the intensity variation of pixels. Based on this slope, binary 
thresholding is done to mask out the region consisting of only the road area on which the 
drone has to travel. We then find the centre of mass of a band of the road directly ahead 
of the UAV (100 pixels long in the image frame) which coincides with the centre point of 
the road (green dot in fig).  
 
 
 
 
 
 
 



 
 
 

                
Masked Image of the road depicting the road’s  

centre (the desired position of the UAV)  
and the UAV’s current position. 

 

 
The 100-pixel long band ahead of the UAV, and its centre of mass. 

 
Since our algorithm aims to ensure that the UAV always travels along the centre of the 
drone, the coordinates of the UAV are essentially the coordinates of the centre of the 
road. Thus, we are storing these coordinates in a rosbag file and as a plot using Matplotlib. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

3. UAV Traversal 
 

Take-off 
The UAV navigation begins from it taking off from the spawn location (within 5 m of the 
UGV). The take-off has been achieved through the Ardupilot framework. Sensors like IMU, 
GPS and gyroscope are calibrated and once this is complete, the UAV gets into “guided’ 
mode (using rosservice /mavros/set_mode), then arming of the UAV starts (using 
rosservice /mavros/cmd/arming). To proceed with the take-off (through 
/mavros/cmd/takeoff) we then publish a take-off height of 15 m (to ensure that the UAV 
satisfies the height constraint of 20 m).  
 

Path-planning 
Once we get the coordinates for the centre of the road through image processing, the 
next job is to calculate the relevant commands which need to be published to the UAV. 
Since the RGB-D camera of the UAV is facing directly downwards, the centre of the image 
published by the depth camera will be the UAV’s x and y coordinates and the image’s 
vertical axis will be the UAV’s current heading trajectory. The transversal distance 
between the UAV’s current position and the road’s centre (dy) gives the error signal for 
calculating the UAV’s velocity perpendicular to the road (blue line in fig). The angle (θ) 
between the UAV’s heading direction (red arrow in fig) and the road’s trajectory (green 
arrow in fig) acts as the error signal to calculate the yaw which needs to be published for 
the UAV to align itself along the central trajectory of the road.  
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Masked Depth Image Masked Image depicting drone’s 

trajectory, road’s trajectory and distance 
between UAV and road centre 

 
 

Navigation 
We are working with the local coordinate frame of the UAV (coordinate frame 8 in 
Mavros, with type mask 3008) so that the UAV can easily change its yaw and other 
important parameters in real-time without the need for any tedious transformations. The 
commands are published through the /mavros/setpoint_raw/local topic. 4 commands are 
published to the UAV which have been explained below: 
  

• Forward velocity in the x-direction (velocity.x): A continuous forward velocity is 
published to the UAV so that it traverses the road. This velocity depends on the yaw 
angle published to the UAV. If the UAV is negotiating a sharp turn, the forward 
velocity is reduced (to 0.7 m/s), while on relatively straight trajectories, the forward 
velocity is 1 m/s. 

• Transversal velocity in the y-direction (velocity.y): Using a P controller, a velocity 
is published in the horizontal direction (w.r.t. the image frame) which drives the 
distance error dy to 0. It provides an additional element of control in the horizontal 
direction, keeping the UAV in the centre of the road. 

• Vertical position in the z-direction (position.z): Using a P controller, a position in 
the z-direction is published so that the UAV’s elevation from the road is always fixed  



 
 
 
 
 
and equal to the take-off height of 15 m. This also ensures that the UAV doesn’t 
exceed the height constraint of 20m. Another advantage of controlling the height 
of the UAV is that the depth image thus obtained is always relatively uniform in 
terms of the width of the road, as well as both of its edges are inside the frame. 

• Yaw angle (yaw): Using a PD controller, an accurate yaw angle is published to the 
drone so that it aligns itself with the direction of the road and drive θ to 0. Upper 
and lower bounds are enforced on this angle to prevent oscillations and noise. As 
long as the yaw is aligned along the trajectory of the road, the depth image 
obtained is also such that the forward path is exactly vertical, in turn guiding the 
UGV on the forward path. 

 

 
Image of the drone depicting its x, y and z and yaw angle nature in the local frame 

 
Through the aforementioned 4 controls in respective 4 degrees of freedom, the UAV 
traverses a path directly above the mid-point trajectory of the road and at a constant 
height 

 

 

 

 



 

 

4. UGV Traversal 
 

Devoid of any sensors, the UGV’s traversal of the terrain depends entirely on the UAV’s 
path and the positional feedback provided by it. 
 

Positional Feedback 
Positioned just above the Ground Vehicle, the UAV provides an RGB image which is used 
to detect the position of the UGV in the image frame in units of pixels. This is done via 
OpenCV, first masking out the UGV from the rest of the background. Since the UGV has 
very distinct visual features from its surroundings, it can be detected easily. Then finding 
out the centre of mass of the contour thus obtained, resulting in the exact coordinates of 
the UGV relative to the UAV. 
The orientation of the vehicle is found through image processing on the top-view of the 
vehicle. It is done by detecting the centre of masses of the two windscreens on the 
vehicle and making a line joining the two. 
 

 
Detecting pose and orientation of UGV through OpenCV 

 
 



 
 
 
 

 

Path Planning 
We have the coordinates and orientation of the UGV in the image frame of the UAV. A 
local waypoint towards a position that is trailing the UAV’s position (which will coincide 
with the road’s centre) is given to the UGV so that the UGV always follows the UAV. This is 
achieved by driving the vertical distance (in the image frame) between the UAV’s position 
and the waypoint (dy) and the difference between the UGV’s current heading angle and 
the drone’s trajectory (which will be a vertical line in the image frame, denoted by θ) to 0. 
 

Navigation 

We are working with the image frame of the UAV.  4 commands are published to the 
UGV through the /prius topic which are explained below: 

• Initialising the gear (shift_gears): Since the UGV is initially stationary with a gear 
value of 1 (Neutral), we change the gear to value 2 (Forward) so that the UGV can 
start its traversal. 

• Accelerating the UGV (throttle): Using a P controller, the vertical distance between 
the UGV and the local waypoint (50 pixels below the centre of the image), dy, is 
diminished. This value is positive (with a maximum value of 1) when the UGV is 
lagging behind the waypoint and is 0 if the UGV has reached or crossed the 
waypoint. 

• Decelerating the UGV (brake): Using the same controller as above, if the UGV 
overshoots the target (dy is negative), the throttle command is immediately set to 0 
and a brake command is published. The value of the brake is calculated based on 
the extent of overshoot (with a maximum value of 1). If the car lags behind the local 
waypoint, the brake value is set to 0. 

• Steering the UGV (steer): Using a PD controller, the difference between the UGV’s 
current heading angle and the desired heading angle obtained through image 
processing (θ) is driven to 0.  

 
Through the above controls, the UGV is made to follow the UAV as it moves ahead on the 
mid-point trajectory of the road. 
 
 
 
 
 
 



 
 
 
 

 

5. Alternate Approaches  
Using a 3rd-party Mapping package 
 
We tried the more obvious approach of mapping the terrain using Rtabmap, Octomap 
and similar packages in the 1st phase, storing the generated map as a file, and then using 
this map for the navigation of the UAV (along with the UGV) in the 2nd phase (with the 
snow overlay). 
However, this seemingly efficient approach has many flaws: 

• Since the UGV doesn’t have any sensors and feedback to the UGV can be provided 
only through the UAV’s camera feed, the UAV would need to anyways fly directly 
above the UGV along the centre of the road during the traversal of the UGV. This 
would mean that the UAV travels a path, makes a map, and then travels the same 
path again, thus making the map, to a large extent, redundant. 

• Using the above-mentioned mapping algorithms requires many tedious 
transforms between different local frames and the global frame.  

 

Using Rosbag 
After successfully navigating the UAV along the centreline of the road (on the image 
overlay version of the world), we recorded the UAV’s odometry data and the commands 
published to it in a rosbag file. However, when we tried replaying the rosbag file on the 
plain overlay version of the world, we observed significant deviations in the UAV’s path. 
After researching about the issue, we found that replaying a rosbag file has its inherent 
errors and since the environment also has some noise, it is not practical to use rosbag for 
solving the problem statement 
 

 

 
 


