Platoon Control of Autonomous Vehicles

Submitted

by

Amisha Verma, 20115012
Archana Singh, 20115019
Ritvik Mahajan, 20117101
Sameer Talwar, 20115122
Shreshth Mehrotra, 20115136

Supervisor
Prof. Arnab Dey

Department of Electrical Engineering
Indian Institute of Technology Roorkee
2022-2023

Declaration

I hereby declare that the work which is presented here, entitled Platoon Control of Autonomous
Vehicles, submitted for the completion of course EEN 300: Industry Oriented Problem. I also
declare that I have been doing my work under the supervision and guidance of Prof. Arnab Dey,
Electrical Engineering Department, Indian Institute of Technology Roorkee. The matter
presented in this report is not submitted for award of any other degree of institute or any other

institutes.

Date: 18-04-2023 Signature
Name

Enrolment Number

Certificate

This is to certify that the above statement made by the candidate is true to the best

A

Signature

Prof. Arnab Dey

of my knowledge and belief.

Assistant Professor
Department of Electrical Engineering

Indian Institute of Technology Roorkee

Abstract

With the rapid increase in the deployment of vehicles on limited road infrastructure, there is a
need for novel methods to increase traffic density, ensure safety for passengers, and reduce the
environmental impact of vehicles. In this regard, autonomous vehicle platoons have recently
gauged the interest of academia and industry. In a platoon, multiple vehicles travel closely while
maintaining a consistent inter-vehicle distance policy. Controlling vehicular platoons involves
various challenges, which include, but are not limited to, disturbances in the leader agent’s
velocity, lane changing, and the presence of other vehicles near the platoon.

In this work, we tackle the problem of longitudinal and lateral control of platoons during single-
lane movements and lane-change manoevre. Initially, we consider a basic bicycle model for the
vehicle in MATLAB and develop controllers based on Model Predictive Control for longitudinal
distance tracking and PID for yaw control. We then propose a PID-based controller for
longitudinal distance tracking and prove that both the distance and yaw error dynamics are stable
for all platoon members. We also simulate our proposed method with full vehicle dynamics
considered in the CARLA simulator and show through simulations that the platoon remains
intact under various adverse conditions. A basic path-planner is also developed for the members
of the platoons to ensure that the safety of all the vehicles is ensured during the lane change
manoevre.

The report is organized as follows — the first chapter introduces the relevant concepts and
definitions associated with the control of vehicular platoons. The second chapter discusses
mathematical modeling, and the third chapter moves on to controller design and analysis in
MATLAB and Simulink. The fourth chapter presents the path-planning algorithm, and the fifth
chapter presents the experiments conducted in both MATLAB and CARLA and the
corresponding results. The sixth and final chapter concludes the report.

Table of Contents

N 1] 2 vt P

List of Figures

1. Chapter 1: Introduction

2. Chapter 2: Mathematical Modelling

3. Chapter 3: Controller Design and Analysis
4. Chapter 4: Path Planning

5. Chapter 5: Experiments and Results

6. Chapter 6: Conclusion and Future Works

References

16

19

23

24

List of Figures

WONU A WN R

PR R R R R R R R R
L ONODOOULDWNRO

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
. Fig.
. Fig.
. Fig.
. Fig.
. Fig.
. Fig.
. Fig.
. Fig.
. Fig.
. Fig.

: A 4-member heterogenous platoon

: Graphical interpretation of string stability

: Bicycle model

: A three-vehicle platoon

: Vehicles during lane change

: Two adjacent members of the platoon during lane change

: Default Adaptive Cruise Control

: Modified Adaptive Cruise Controller

: PID controller block diagram for longitudinal control

10: PID controller block diagram for orientation control

11: Architecture for CARLA’s path planning algorithm

12: velocity vs time for 4-vehicle platoon

13(a): error in distance vs time

13(b): y-position vs time

14: y-position vs time for overtaking manoevre using PID controller

15: error in distance vs time for overtaking manoevre using PID controller
16: error in distance vs time for 4-vehicle platoon depicting finite steady state error
17: Orientation and distance errors for a 3 membered platoon

18: y vs x plots for a 3 membered platoon (leader, follower 1, follower 2)

OO NOUVIL,WNR

Chapter 1

Introduction

Many problems faced on the roads can be solved or reduced in intensity if platoon formations are
utilized. It has been proven that autonomous platoons improve traffic flow density, fuel
efficiency, and road safety compared to human-driven vehicles. Moreover, as autonomous or
self-driven vehicles have started making a presence on roads worldwide, their advanced
applications have also surfaced and serve as research opportunities. With this motivation, we
have attempted to solve the platoon control problem.

A lot of research has been done in the fields of autonomous vehicles’ perception, decision-
making, motion control, and motion planning. However, complex and challenging manoeuvres,
like cooperative overtaking of autonomous vehicles, still remain unsolved. [1] uses Finite State
Machines to attempt the problem of lane-change and overtkaking for a platoon. In addition to
maintaining the required distance between platoon members, vehicles also need to interact with
the external environment. In this regard, lane keeping and obstacle avoidance also become
important. Artificial Potential Fields have been explored in [2], [3] to drive the vehicles to their
respective waypoints while avoiding obstacles. Recently, learning-based approaches have also
been exploited for planning due to the complex nature of the problem in terms of sample sizes
and uncertainties. [4] uses Deep Reinforcement Learning for path planning of individual
vehicles.

The following terms are associated with platoons and are defined as such during this research:

Platoon: When defined with respect to automobiles, a platoon is a group of vehicles that travel
very closely together, ensuring safety even at high speeds.

Each vehicle communicates with the others in the platoon, but not necessarily with all.

Fig. 1: A 4-member heterogenous platoon

Platoons can be homogeneous or heterogeneous depending on the variety of automobiles in the
system. We have only considered homogenous platoons in this work.

Leader: As suggested by the name, it is the vehicle in the front of the platoon that initiates most
of the path-planning decisions according to the data obtained from sensors.

Follower: A vehicle in the platoon ranging from the second to last position, essentially following
the one ahead of it.

String Stability: A parameter to judge the stability of the platoon at all times, given some
controller. An intuitive way of understanding string stability is that any disturbance should not be
amplified as we move down the platoon. This can be seen in Fig. 2.

Many formal definitions of String Stability have been proposed by different researchers, which
include SFSS (Strong Frequency-domain String Stability), TSS (Time-domain String Stability),
LPSS (Lyapunov), etc. The Original String Stability (OSS) criterion adapted from [5] states the
following:

A string of vehicles is stable if, for any set of bounded initial disturbances to all the vehicles, the
position fluctuations of all the vehicles remain bounded, and these fluctuations approach zeros as
t— o0,

x;(t) 160 .

(=3

120 e

i=1
80}
40 b
0 A - L) A S
0 80 180 240 R0 . ™ 0 P

T'ime (s) Time (s)

Fig. 2: Graphical interpretation of string stability

Distance Policy: In this work, the desired inter-vehicular distance has been chosen as a function
of the velocity of the ego vehicle to ensure safe braking within some permitted value of distance
and finite time.

Platoon Control is an umbrella of tasks, a few of which are:

1. The Control Problem: A pure control problem that involves controlling the speeds and
direction of an agent by designing a controller which gives the values of inputs like
acceleration, steering angle, etc. It consists of constructing a model of the system,
designing a controller, and testing the outputs’ stability and accuracy.

a. Longitudinal Control: A 1-D control ensuring string stability and safe inter-
vehicular distance even with jerks in the system.

b. Lateral or Steering Control: Warranting that the vehicle is driven along the
road, inside the lanes, or turns safely, lateral and orientation control is necessary.
The following are the applications requiring such a type of controller.

1. Lane Changing
ii. Overtaking

iii. Turning

2. The Planning Problem: On roads, often the same lane isn’t the most feasible to travel in,
for example, when the cars ahead are moving at a slower pace or if an obstacle is right
ahead. The entire decision-making process of the instant and magnitude for methods, like
slowing down, overtaking, etc., are taken by a planner. It also consists of a path planner
weighing the feasibility of different paths.

This segment also involves taking in data from the sensors and processing it for well-
informed decision-making. It gives inputs to the controller, which acts as an enforcer of
the manoevre.

3. Communication Problem: V2V communication includes the method used for
interacting and sharing data between the platoon’s agents. The researchers must decide if
every agent communicates with the leader or just the adjacent agents. Any combination
of both can also be employed. Practical communication protocols also involve jitters,
breakage, and delays. New and innovative algorithms are being developed for this
segment. In this work, we assume a predecessor-following model for communication.

In this work, we focus on the problem of longitudinal control and lane changing for a platoon of
autonomous vehicles. Initially, we used a bicycle kinematics model to approximate the model of
the vehicle in MATLAB and Simulink. For longitudinal control, we first exploited a modified
version of Adaptive Cruise Control based on Model Predictive Control to maintain a velocity-
dependent safe distance between two adjacent members of the platoon. Then, a PID-based
longitudinal controller is developed from scratch for longitudinal control. We also designed
another independent PID-based controller for orientation control. Orientation control is required
during a lane change and also helps to keep the vehicles aligned in case of small disturbances.
We then move to the CARLA simulator to test with high-fidelity vehicle models and real-world
conditions. We modify the default path planner and controller provided by CARLA for
platooning applications and show that the platoon remains intact even with various disturbances
and other vehicles’ presence.

The next chapter starts discussing in more detail our contributions by presenting the
mathematical modeling of the platoon and its member vehicles.

Chapter 2

Mathematical Modelling

We use the bicycle kinematics model to approximate the model of all the vehicles. The inputs to
the system are the longitudinal velocity v and steering angle .

(xy)

> v | state
v 4

>y stateDot

Turning Radius

G) \d,)
> —

WheelBase, |

Bicycle Kinematic Model

Fig. 3: Bicycle model

The system state is a vector containing its x, y coordinates, and orientation 0, with respect to a
global inertial frame. The relation between { and 0 is given by:

g Vtzlmdj

The bicycle model helps simplify the complex nonlinear dynamics of 4-wheeled vehicles,
making the analysis more convenient. However, the vehicle controller (or even human users)

generally outputs longitudinal acceleration. The acceleration can be converted to the longitudinal
velocity by:

V(s) = a(s)

5(0.5s+1)

We make the reasonable assumption that the vehicle is able to estimate its own state with decent
accuracy.

We are considering a homogenous vehicle platoon where the inter-vehicle distance policy is
given by:

dsafe = ddefault + Tgapvego

Here, dq4y. is the desired distance between the vehicles, dgerauir, and Tyqy, are constants, and
Vego 18 the velocity of the current (ego) vehicle.

Goa: b, € Safe distance Goal: D_rel = D_safe safe distance
Ego Ca Ego Car Lead Car
- - a =
- \
i = 3 Relative distance o) Relative distance § he)
oy . (ol - lguiih
Spacing Control Spacing Control

Fig. 4: A three-vehicle platoon

The actual longitudinal distance between two adjacent vehicles is denoted by d,..;. Our objective
is to maintain the relative distance equal to the safe distance. The controller for achieving this is
discussed in the next chapter.

In the case of platoons capable of lane change manoevres, we also need to consider the
orientation of member vehicles and ensure that the vehicles are always aligned.

Fig. 5: Vehicles during lane change

Fig. 5 illustrates various quantities of interest for orientation and longitudinal control. Here,
vehicle 2 is the leader, and Vehicle 1 is the follower. As defined earlier, d,; is the relative
distance between the two vehicles measured along the line joining the centers (We assume that
the center of gravity lies on the center of mass for each vehicle) of the two vehicles. 8;and 6,
are the orientations of the vehicles, and Y ands, are their respective steering angles. The
vehicle velocities make angles A; and A, with the line joining the two vehicles. To make the
follower vehicle track the leader’s yaw profile, we need to drive both its orientation and steering
angle to that of the leader’s.

Chapter 3

Controller Design and Analysis

Control of Leader

To test the platoon under different conditions, we give arbitrary trajectories to the lead vehicle,
like a constant velocity profile, an impulse disturbance in the velocity, etc.

Control of Followers

The objective of designing a controller for such a system is to ensure the platoon follows the path
the path planner gives. The errors in such a case are defined by-

Error in distance: The difference between the instantaneous value of the inter-vehicular
distance between adjacent agents and the safe distance, which is a function of their instantaneous
velocities.

Error in Lateral Position: As agents in the platoon should line up one behind the other, this
error is defined as the lateral distance between the body line of the leading vehicle (in front of the
vehicle of concern) and the instantaneous position of the latter.

Error in Orientation: Similar to the error in the lateral position, it is defined as the difference in
the angle of body line with respect to global reference frame.

Lateral

Distance Orientation
Error

i

Fig. 6: Two adjacent members of the platoon during lane change

Error in Steering Angle: This is the difference between steering angle inputs given to the leader
and the follower. Controlling it would make sure that the platoon reacts faster and
simultaneously to lane change and turning initiations.

For longitudinal control, we first explore the existing Adaptive Cruise Control block available in
MATLAB and modify it for platooning applications. This method is based on Model Predictive
Control [7]. The motivation behind building the control structure around an existing method is
that since ACC is usually available off-the-shelf in many real vehicles, it makes our approach
easier to implement on practical systems. However, the default ACC module tracks the reference
distance only if the relative distance is less than the safe distance. Otherwise, a constant velocity
(Vser) 18 tracked.

Goal: V_ego=V_se
Ego Car Safe distance Lead Car
‘ ’
r@ — It @\“ Relative distance o F@ ..;
Speed Control -

Goal: D_rel = D_safe safe distance

Ego Car Lead Car
-~ L
r@@*i. Relavedance, 1@1
R
Spacing Control

Fig. 7: Default Adaptive Cruise Controller

To make it so that the controller always tried to track dgqz., we modify the expression of v, as:

t
Vset = Viead cos A2 + Kped + K, % +K1/ eqdt
0

Here, 4 = dye; — dsqre and Vigqqc0sA,; is the preceding vehicle’s velocity along the line joining
the two vehicles. This way, the modified ACC module always tries to track dgqe.

Vet
V;
" MPC based Adaptive Cruise .
d Controller acceleration(a)
rel
‘/longitudinal

Fig. 8: Modified Adaptive Cruise Controller

9

The modified ACC module takes as input Vs, , dye, Vier (relative velocity between the two
vehicles), and Vigngituainai (longitudinal velocity of the ego vehicle).. It calculates a, the

component of vehicle acceleration along the line joining the two vehicles. Thus, the acceleration
input to the vehicle will be a;ongirudinar = @ S€CAego.

This controller ensures that the longitudinal distance error is driven to zero. Next, we develop a
PID-based controller from scratch to replace the ACC block.

The longitudinal PID controller tries to make the relative distance between adjacent vehicles
equal to the required safe distance.

dsafe

drel
From Lead Vehicl C(s) > G(s) »
a ¥_current
vehicle

Fig. 9: PID controller block diagram for longitudinal control

We use another independent PID-based controller for tracking the desired yaw values for
orientation control.

etheta
—fFrom Lead Vehicle, orientation Sum

A

—~From Lead Vehicle, steering » T
- es
L

C(s)

A 4

G(s)

\4

\ 4

heta

Conversion to Local Frame |«

S

Fig.10: PID controller block diagram for orientation control

10

Proof of convergence of the distance error:

1

We define the Transfer function from acceleration to velocity as G(s) = 0B 7D

, , and our

proposed PD controller as C(s) = k, + kas . Then for the i vehicle:

ai(s) = C(s)Ei(s)

(1)
CEG

s (2)

Vi:SXi:aiG:CEiG — Xi:

The safe, and relative distances between the i™ and the (i-1) " vehicle (with the (i-1) ® vehicle being in
front) are defined as:

Ko :
Dra = E(l‘i =S .’Ei) = e f & (3)
8 8
10
Dsage = £(10 + Tyapti) = — + Toaps Xi (4)

The distance error between this pair of vehicles is defined as g, - D, — D, - Using (1)-(4), this
simplifies to:

10 10 CEG
E; = Dret — Dggpe = Xi 1 — o (1+ 8Tpap) Xi = Xi 1 — = (1 + 8Tgap)(};Jl) (5)
s 0
Bi(1+ CSC t TyopCEG) = Xi 1 — 1? (6)
10 CE; «G 10 10
o vy % BiGg Ba-a (7)
n x a s r a s a b
1+CC+T.,G,,CG 1+05C+Tga,,cc: 1+ =g t $Top
Where:
o 10 _ 10s(0.5s +1) (8)
 CG kptkas
82(0.55 +1
e e i g gy B8 1 2] (9)

(o0& kp + kds

11

(7) 1s a recursive equation involving g and F; . for i=2, 3...n (note that i=0 is the lead vehicle).
We can observe the first few terms:

E2:E1b~a (10)

__Eg—a_EIAa(lan) 11
B=2-0-2 8 (11)
4E3—0,7E1*a(1+b+b2) (12)
Bi=—%—= b3

From (10)-(12) we write a closed-form solution for f, as:

Ey—a(1+b+b%." %) (13)
- o

E,

From the final value theorem, we can calculate the steady state error between the n' pair of vehicles
as:

550
From (8) and (9):
lima = 0 (15)
limb = 1 (16)
The error between the leader and the first follower g, can be expressed using (6) as:
10
XL — — B
El _ e 8 _ S(VL 10]31’ - kds (17)
1+ ==+ TowpCG 8%+ (1 + sTgap) =y
Using (13) to (17):
ess — limsE, = limsFE, = 1 lims2VL(s) = lim S2Ga1,(s) (18)
h 50 50 ! kp 550 550 kp

12

1

i 2 we finally get :

Since ¢(s) —

L 19
€ss 1113%kpaL(s) ()

. . . k
For an impulse disturbance, ez, — () .. For a step disturbance ap,(t) = ku(t). €ss = =
P

a constant, bounded steady state error. These results are validated experimentally in chapter (5).

The results obtained hold true for any pair of vehicles and are thus independent of the platoon size.

Proof of convergence of the orientation error:

Let 7; denote the steering angle and #; denote the orientation (yaw) angle of the i vehicle (with i=0
being the leader, i.e 6, = 41 . The proposed controller is:

C(s) = ky + kas (20)
The orientation error is defined as:

Ei =0i1—06; (21)

From the bicycle model kinematics, and assuming small steering angles,

b — vtalnd’ — ktany ~ ki
s6(s) = kyp(s) — ¢ = S—}f (22)

To ensure that the vehicles in the platoon follow their predecessor’s yaw profile, we need to drive
both the steering angle and orientation of the ego vehicle to that of the predecessor’s. Thus, the
steering command to the ego vehicle considers the steering angle of the preceding vehicle also in
addition to the yaw error between the two vehicles. The control law is given by:

i 0;—
Yi = kivi 1 + CE; = % = fy > z .

+ CE; (23)

13

Using (21):

_ g kCE; __s(l—kl)_ s
E,—(l*kl)axlf B :E,— s+ kC 011—a011
Where:
73(1*’61)
s+ kC

Now, from (21) and (24) , we get:
i 1=0;i 2—E y — Ei=a(i2—FEi1)=FE —aF;1=FE 1(1—a)

Since E; = aby = afy, , (26) simplifies to :
E,=E(l-a)"!=a(l—a)" 4
Now, we observe that: lim(1 —a)" t=1

Thus, by the final value theorem, we can calculate the steady state error:

€ss — limSEn - hm saOL
s—0 s—0

Finally, using (22) and (28),

R R _ 1
€38 = ook ?B&s 0r(s) = % il%sd)l,(s)

.
For an impulse disturbance, €ss = 0 and for a step disturbance ¢ = cu(t): ess = 5~ which is
»

constant and thus, bounded.

(24)

(28)

(29)

Again, the results obtained hold true for any pair of vehicles and are independent of the platoon size.

To further improve the performance of the controller, we added an extra term that accounts for the

lateral deviation: to try to ensure that the vehicles end up in the middle of the lane when the lane

change manouvre is finished. Also, we added an exponential term to speed up the process when the
error is large. The additional term goes to 0 as the lateral error goes to 0. The modified control law in

the time domain is given by:

d€0

7 T yeyelrl

i = k1¥i 1 + kpeg + kq

14

(30)

Where:
eg =0i 1 —0; (31)

€y =Yi 1~ Ui (32)

The overshoot was reduced considerably which improved the transient performance considerably.

15

Chapter 4

Path Planning

The job of any path planner is to generate feasible and safe paths to drive the vehicle to its goal
location in the most efficient manner. In this work, in addition to our developed logic, we are
also using the default path planner provided by the CARLA simulator [6], called the Traffic
Manager (TM). The architecture of TM is shown in Fig. 11.

Agent Lifecycle & State Management (ALSM)

i

Simulation State

Carla

|
! ! 1 lJ

Traffic Light | Motion Planner

Command
Array

Vehicle
Registry

.

—| Localization [Collision

| T T

Path Buffers & Vehicle Tracking

In Memory Map PID Controller

Control Loop

C Stage

I Synchronization
Barrier

Fig. 11: Architecture of CARLA’s Traffic Manager
The planner has various components, which are explained as follows:

e Agent Lifecycle and State Management (ALSM): This component keeps track of all the
vehicles and pedestrians present in the world and their states (positions and velocities).

e Vehicle Registry: It receives an updated list of all the vehicles and pedestrians from the
ALSM and stores the vehicles which are controlled by the TM.

e Simulation State: This receives data from the ALSM and stores information like actor
state, traffic light states, etc., in a cache for faster control loop implementation.

16

Control Loop: This is one of the primary components of the TM, and it manages the
calculations of the next command for all autopilot vehicles. The control loop has five
stages:

o Localization: After obtaining the vehicle state from the Simulation State
component, it relates every vehicle with a near-future path according to its
trajectory. Naturally, this path is affected by vehicle speed and high-level
decisions such as lane change. This stage also compares paths with each other to
estimate potential collisions.

o Collision: The Collision stage receives a list of vehicle pairs that can potentially
collide, i.e., their paths overlap. After evaluating if the vehicles will actually
collide by considering the bounding boxes of the vehicles, it sends all the possible
hazardous paths to the Motion Planner stage for modification.

o Traffic Light: This stage manages the traffic regulators like traffic lights and stop
signs. At unsignaled intersections, a First-In-First-Out (FIFO) order is followed.

o Motion Planner: This stage takes as input the vehicle state, path, and possible
hazards. It is responsible for making high-level behavioral decisions like
calculating the brake command for preventing collisions. These commands are
sent to the Command Array component for implementation. Under the hood, this
component runs a PID controller.

o Vehicle Lights: As the name suggests, this component is responsible for controlling
the lights based on vehicle movement. Its tasks include turning on indicators
while turning and controlling headlights, stop lights, and fog lights.

In-Memory Map: Its job is to convert the map into a grid of discrete waypoints. This
component also identifies the vehicles located nearby to these waypoints.

Path Buffer and Vehicle Tracking: This component contains the expected path for all the
vehicles and stores the In-Memory Map to relate the vehicles with their nearby
waypoints.

PID Controller: It is responsible for calculating the low-level commands, like throttle,
brake, and steering, for the vehicles once the target waypoint is received from the Motion
Planner.

Command Array: It is the final stage of the Traffic Manager. It receives all the commands
and applies them in the simulator.

The multiple stages in the planner ensure that the generated paths are safe and collisions are
avoided. However, for platoon path planning, we must consider all the members’ safety while
additionally ensuring that the platoon remains intact. This means that the decisions of the
individual members cannot be independent of each other.

We use the default automatic planner and controller based on TM provided by CARLA for the
lead vehicle. This is better than using a custom planner and controller for the leader since using

17

the existing planner provides an opportunity to test the follower vehicles’ behaviors for various
leader behaviors. The leader is given a goal location, and its planner and controller are
responsible for generating and tracking the path toward the goal. During its journey, the planner
may direct the leader to change lanes, increase or decrease speeds or stop. The followers are also
given a goal location in accordance with the distance policy.

For the followers, we create a rectangular bounding box around the vehicle to check whether a
lane change manoevre is safe. The steering commands given by the planner of the leader are
checked continuously to check if the leader wants to change lanes. If the steering command
exceeds a pre-defined threshold, all the follower vehicles’ bounding boxes (in the direction of the
proposed lane) are checked.
e [fall of them are clear, the platoon undertakes the lane change manoevre with the
longitudinal and lateral controllers, as discussed in the previous chapter.
e Ifany vehicle contains another vehicle not part of the platoon in its bounding box, the
lane change manoevre is classified as unsafe and aborted. In this case, the leader’s
steering commands are overwritten, and the whole platoon remains in its lane.

This way, it is ensured that the platoon only changes lanes if all the vehicles are safe and there is
no splitting of the platoon. As an added safety measure, if the platoon is broken in any case, we
deploy the default automatic controller on all the individual members of the platoon. The
simulation is stopped once all the platoon members reach the final destination.

18

Chapter 5
Experiments and Results

Modified Adaptive Cruise Control and PID Yaw Controller

The first experiment was carried out by simulating the model of the platoon in MATLAB for the
CACC system which used MPC blocks. We simulated various conditions to verify the
appropriate working of the controller.

36

“r | [[[| | v_lead }

ok | | I I v_ego_1| |
v_ego_2

sk I I / | v_ego 3|

28 I I ’ I I N

261 I | | | i

24 { { { { | .

Fig.12: velocity vs time for 4-vehicle platoon

Fig. 12 represents the output of a velocity vs time curve when a short-duration pulse of
acceleration is given to the leader of a 4-vehicle platoon as input. The result is that all the
vehicles quickly readjust their velocity within 15 seconds. We can see that the steady state error
is near to zero.

0.08—_ | | | | | I —d_err_1-2 || 3%
- =-d_err_2-3 4
0081 1° v, lead_y ||
d_lerr = d|_rel - d_safe * o
0.04 | | | | | | 1 I 1 o8l AL —=—=egol_y||
! ego2_y
21 KA | |
15137 276 279] 28 281
002k I I T | I A
0.04 T
0.06[0.5
0.08—f Y [VR ——
0.1 I 1 I 1 I 1 I 1 1 1 | I Il | Il 1 1
24 25 26 27 28 29 30 31 32 33 34 22 24 26 28 30 32 34
Fig. 13(a): error in distance vs time, Fig. 13(b): y-position vs time;,

for a 3-vehicle platoon performing lane change manoevre.

19

Fig. 13(b) depicts the y-position vs t curve for a 3-vehicle platoon, minimum error is observed in
this case. Also, through Fig. 13(a) it can be observed that the CACC works almost flawlessly
during the lane change manoevre as the relative distance error between the vehicles does not
exceed a few millimeters in magnitude.

After concluding this experiment, further tests were carried out on the newly formed MATLAB
model with custom PID controllers in place of the MPC blocks.

PID-based Longitudinal and Yaw Control

Fig. 14 and Fig. 15 are the observed results of an overtaking manoevre carried out by the platoon
using this PID controller. A very small constant displacement can be observed with this
controller, however, during an overtaking manoevre, the vehicles converge back to their original
position in the original lane. The longitudinal error still remains miniscule in magnitude implying
the CACC with PID also works very well.

4 T

35 m—lead_y
— - ego‘]_y —
ego2_y

3.4

3.3 L —_—————————_

3.2

| | | L L 1 | | | |
5 10 15 20 25 30 35 40 45 50 55 60

Fig. 14: y-position vs time for overtaking manoevre using PID controller

20

’ I

drel-dsafe 1_2 | |

0.1

=== =drel-dsafe 2_3

0.05

~
—_

-0.05—

-
~.§§

==
]

-0.1

15

20

25

30

35

40

45

50

55 60 65

Fig. 15: error in distance vs time for overtaking manoevre using PID controller

The next experiment in MATLAB was to test the stability of the model by verifying the
convergence of the errors in the model for different types of inputs (acceleration). It was
observed that for an impulse acceleration, the steady state errors indicated by the difference
between relative distance of errors and safe distance, was zero. The error for constantly
accelerating cars was also a constant finite value.

0.4

0.35

0.3

0.25

0.2

drel-dsafe_1_2

== =drel-dsafe_3_4

====drel-dsafe_2_3]

20

30

60

Fig. 16: errorin distance vs time for a 4 vehicle platoon depicting finite stead-state error

21

80

High Fidelity Simulations in CARLA

MATLAB and Simulink were powerful tools for simulating the pure control behaviour when
manually given initiating commands. In order to test out scenarios of decision-making, we used
CARLA, which has provisions for simulating an entire town’s urban mobility. We have used
Python API for CARLA and programmed the vehicle behaviors using Python.

CARLA also offers various libraries for including sensors, like Camera, LIDAR, GNSS, etc.
Making use of them, we simulated an autonomously driven vehicle given a set of coordinates as
the destination. We then implemented the existing autopilot provided by CARLA, with some
modifications (discussed in the previous chapter) for the lead vehicle.

Carla considers the exact nonlinear vehicle dynamics, and our controllers still ensure
convergence to 0 steady state error for both distance and orientation (Fig 17). Fig 18 shows that
the vehicles end up in the middle of the lane (the lane width was chosen as 4 meters), at the end
of the lane change manouvre, with minmal overshoot.

0.15 { — dyawl2 — edl
dyaw23 2 ed2
0.10 4 14 |
| A S N
B e

0.05 |

|
| o
0.001 ~| [/ L e —_— -
-2
~0.05 - u -34

Fig. 17: Orientation and distance errors for a 3 membered platoon.

204 2.0 2.0

o 100 200 00 400 50 60D ™ 0 100 200 00 410 500 00 700 a 00 200 300 400 500 600 700

Fig. 18: y vs x plots for a 3 membered platoon (leader, follower 1, follower 2).

22

Chapter 6
Conclusion and Future Works

In this report, we discussed the control of autonomous vehicle platoons. We proposed a
controller based on the existing ACC infrastructure usually available in CAVs for longitudinal
control and developed a PID-based lateral controller for yaw tracking. We also presented a PID-
based longitudinal controller and proved that both the distance and yaw error dynamics are stable
for the bicycle kinematics model. We then moved on to the path planning algorithm that ensures
safety for all members of the platoon. Finally, all the proposed methods are combined and tested
using the high-fidelity vehicle model and general traffic conditions in the CARLA simulator.

One of the main advantages of our approach is its ability to be readily implemented in practical
systems. Instead of selecting an overengineered method, we propose a simple-to-understand and
easy-to-implement control method that still guarantees convergence. Further, we showed through
simulations that our method is able to handle complex and unmodelled dynamics in CARLA and
is robust to variations in the lead vehicle’s velocity. During lane change, applying both
longitudinal and lateral control parallelly ensures that the platoon remains intact. Further, the
path planner continuously checks if a lane change is feasible, ensuring no unsafe manoevres are
possible.

A future research direction can include developing more robust path planners that may
incorporate learning-based approaches. Further, formal guarantees on string stability, in addition
to error convergence, can be explored. Overtaking is a more complex manoevre than lane
change, and more sophisticated control and planning approaches should be developed for this
relatively unsolved problem.

23

References

[1] M. Strunz, J. Heinovski and F. Dressler, “CoOP: V2V-based Cooperative Overtaking for
Platoons on Freeways,” 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), Indianapolis, IN, USA, 2021, pp. 1090-1097, doi: 10.1109/ITSC48978.2021.9565122.

[2] Y. Rasekhipour, A. Khajepour, S. -K. Chen and B. Litkouhi, “A Potential Field-Based Model
Predictive Path-Planning Controller for Autonomous Road Vehicles,” in IEEE Transactions on
Intelligent Transportation Systems, vol. 18, no. 5, pp. 1255-1267, May 2017, doi:
10.1109/TITS.2016.2604240.

[3]S. Xie, J. Hu, P. Bhowmick, Z. Ding and F. Arvin, “Distributed Motion Planning for Safe
Autonomous Vehicle Overtaking via Artificial Potential Field,” in IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 11, pp. 21531-21547, Nov. 2022, doi:
10.1109/TITS.2022.3189741.

[4] Changxi You, Jianbo Lu, Dimitar Filev, Panagiotis Tsiotras,” Advanced planning for
autonomous vehicles using reinforcement learning and deep inverse reinforcement learning,
Robotics and Autonomous Systems”,Volume 114, 2019.

[5] Shuo Feng, Yi Zhang, Shengbo Eben Li, Zhong Cao, Henry X. Liu, Li Li, String stability for
vehicular platoon control: Definitions and analysis methods, Annual Reviews in Control,
Volume 47, 2019, Pages 81-97, ISSN 1367-5788, https://doi.org/10.1016/j.arcontrol.2019.03.001

[6] Dosovitskiy, Alexey & Ros, German & Codevilla, Felipe & Lépez, Antonio & Koltun,
Vladlen. (2017). CARLA: An Open Urban Driving Simulator.

[7] Al-Gabalawy, M., Hosny, N.S. & Aborisha, Ah.S. Model predictive control for a basic adaptive

cruise control. Int. J. Dynam. Control 9, 1132-1143 (2021). https://doi.org/10.1007/s40435-020-
00732-w

24

